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ABSTRACT

Up to now, a number of models have been proposed and discussed to describe a wide range of inelastic
behaviours of materials. The fatal problem of using such models is however the existence of model errors,
and the problem remains inevitably as far as a material model is written explicitly. In this paper, the authors
define the implicit constitutive model and propose an implicit viscoplastic constitutive model using neural
networks. In their modelling, inelastic material behaviours are generalized in a state-space representation
and the state-space form is constructed by a neural network using input—output data sets. A technique to
extract the input—output data from experimental data is also described. The proposed model was first
generated from pseudo-experimental data created by one of the widely used constitutive models and was
found to replace the model well. Then, having been tested with the actual experimental data, the proposed
model resulted in a negligible amount of model errors indicating its superiority to all the existing explicit
models in accuracy. ( 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There has been an accelerating rate at which various solids and structures were developed to
assist the objective of industrial designers. In many industrial fields, they are often used under
severe operating conditions such as cyclic loading, high-temperature, high-pressure and high
irradiation, for instance, if they are used as pressure vessels and pipes of a nuclear plant. This gives
rise to the necessity for inelastic analysis of materials, properties of which are characterized by
material models or constitutive equations, based on the observation of simple experiments
(tension, compression, torsion, etc.).

Because of the complexity of material behaviour, a great number of inelastic constitutive
models have been developed accordingly.1—8 Inelastic material models proposed so far can be
classified into two types.9 In the first type, the model is expressed only in terms of observable
variables, although it is limited in its descriptive ability.10 The second type of model has not only
observable variables but also variables representing material internal behaviours.2,3,11—13 Due to
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the introduction of additional variables, this type of model has a larger degree-of-freedom in
description, thus being superior to the first type.

The significant problem involved with such models is however that the models contain errors
inevitably, as they are based on simple phenomenological investigations of material properties
while real behaviours of material is very complex. Up to now, researchers rather have attempted
to overcome this problem by either introducing higher-performance models or better parameter
identification techniques.14—18 However, they do not tackle the substance of the problem since
any model is limited by the capability of their mathematical description, i.e. the model is written
explicitly. On the other hand, a non-explicit approach appeared in the research by Ghaboussi
et al.19 and their subsequent papers, although their approach could not represent material
behaviours accurately.

Therefore, in this paper, the authors first define the implicit constitutive model in contrast to all
conventional constitutive models, and then propose an implicit viscoplastic model using neural
networks based on the state-space method. The implicit model can describe material behaviours
broadly without any heuristic determination of phenomenological formulations as it is construc-
ted only from experimental data.20,21 The state-space representation of the proposed technique
enables the description of dynamical or viscoplastic behaviours of materials, and the use of neural
networks as a universal function approximator allows us to simulate the behaviours accurately.

The next section deals with the fundamentals of neural networks, followed by a brief introduc-
tion to viscoplastic models in Section 3. In section 4, the implicit constitutive model is first
defined, and then an implicit viscoplastic model is generalised in a state space form. Finally,
a neural network constitutive model based on the state-space form is proposed. A simple
technique to extract training data from experimental data is also described so that the proposed
model can be used for the actual material data. Section 5 refers to numerical examples in order to
investigate the performance of the proposed model. First, the capability of the proposed model to
emulate one of the commonly used conventional models is investigated, and the proposed model
is then tested with actual experimental data. The final section summarizes conclusions.

2. MULTILAYER FEEDFORWARD NEURAL NETWORKS

The multilayer feedforward neural network has been proven rigorously to be a universal function
approximator for any bounded square integrable function of many variables.22—24 Mathemat-
ically consider a function w :X-RP½-R, from a bounded subset w(X) of Rn to a bounded
subset of Rm where the function is unknown but is assumed to be in ¸2. Given sufficient
input—output data [x

i
, w(x

i
)], often called as training patterns or training data, the neural

network, as an approximation function, wª :X-RP½-Rm, is determined by the well-known
backpropagation algorithm as if the objective

min
wª

+
i

Ewª (x
i
)!w(x

i
)E2 (1)

were achieved where x
i
3Rn is the input to the function. The network is then used for feedforward

computation with various inputs. Such training of the network is normally depicted by the block
diagram shown in Figure 1.

The schematic diagram of the internal structure of the neural network is shown in Figure 2. The
network consists of the input layer, hidden layers and output layer, each having a number of
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Figure 1. Training of neural network

Figure 2. Multilayer feedforward neural network

units, depicted as circles. Each unit is connected to units in the neighbouring layer with a weight,
shown as a line in the figure. The actual neural network is thus parametrized by a set of weights
¼, and in conventional backpropagation training, the objective substantially turns out to be

min
W

+
i

Ewª (x0; ¼)!w(x0)E2 (2)

where x0"x
i
is the input to the network while wª (x0;¼)"xK"yi3Rn is the output, represented

by a K layer network. The input and output of the network are computed by the recursive
relationship

yj"Wjxj~1#vj (3)

xj"(l(yj
1
), l(yj

2
), . . . , l (yj

nj
)) (4)

for j"1, 2, . . . , K, where n
j
is the dimension of the vectors y j and xj, and y j

i
denotes the ith

component of yj. The scalar functions l (.) are monotonically increasing threshold functions, e.g.

l (.)"tanh(.) (5a)
or

l(.)"
1

1#e (.) (5b)
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Let ¼ denote the set of weight parameter matrices/vectors ¼"MW1, W2 , . . . , WK; v1, v2, . . . , vKN.
The derivation of the gradient of wª (x0; ¼) with respect to the individual synaptic weights

¼k
ij

and lk
i

is essentially given by the well-known backpropagation formula.25 For the output
(Kth) layer,

LxKa
L¼K

ij

"hKaixK~1
j

(6a)

LxKa
LvK

i

"hKai (6b)

hKai"l’(yK
i
)dai (6c)

For the kth hidden layer (k"K!1, K!2, . . . , 2, 1)

LxKa
L¼K

ij

"hKaixK~1
j

(7a)

LxKa
LvK

i

"hKai (7b)

hKai"l’(yK
i
) +

t

hk`1ai ¼K`1
*t

(7c)

where d
ij

denotes the Kronecker delta tensor.
The training of the neural network through the backpropagation algorithm is iterated until

a terminal condition is satisfied. Normally, input—output data which were not used for training,
often termed validation data, are prepared beforehand, and the termination takes place if the
mean square error in equation (2) turned unchanged through iterations.

3. MATERIAL MODELS

3.1. Elasticity and inelasticity

In engineering design and analysis, models describing stress—strain behaviour, or constitutive
models, are frequently needed. Often, the stress—strain behaviour is studied by separating the
effect of elastic behaviour from the overall behaviours. The total strain is thus given by the sum of
the elastic strain e% and the inelastic strain e*/ under uniaxial loading condition:

e"e%#e*/ (8)

The elastic behaviour is represented by the linear relationship between the strain and stress:

p"Ee% (9)

where E is Young’s modulus representing a linear coefficient.

3.2. Plasticity

Let a material be plastic for inelasticity, i.e.,

e"e%#ep (10)
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where ep is the plastic strain. Plastic hardening materials perform plastic deformations only upon
increasing the stress level and the yield condition for plastic deformations changes during the
loading process. The performance of such materials thus depends on the previous states of stress
and strain. In such path-dependent cases, the elastic range of materials is in general expressed by
means of the thermodynamic forces associated with the two internal variables, back stress
representing kinematic hardening s and drag stress representing isotropic hardening R:

f"J(p!s)!R!k)0 (11)

where p and k are respectively the stress and material constant, and J represents a distance in the
stress space. The plastic flow follows the normality rule, which states

de1" dj
Lf

Lp
(12a)

The plastic multiplier dj is derived from the hardening rule through the consistency condition
f"d f"0. Materials then possesses kinematic and isotropic rules, for example

ds"CA
2

3
ade1!sP Dde1 DB (12b)

dR"b(Q!R)P Dde1 D (12c)

where C, a, b and Q are material constants.26,27 Note here that we shall not discuss the details of
plastic models as they are out of scope of the paper.

3.3. Viscoplastic models

Materials often have viscous or time-dependent deformations. Time-independent plasticity is
then considered as a particular limiting case of viscoplasticity. In the unified theory capable of
describing cyclic loading and viscous behaviour,3,28 the time-dependent effect is unified with the
plastic deformations as a viscoplastic term, i.e.

e"e%#e1#e7"e%#e71 (13)

where e7 and e71 represent the viscous and viscoplastic strains, respectively.
The viscoplastic potential is generally expressed as a power function of f in equation (11).

Chaboche’s model,9 a popular viscoplastic model, uses this flow rule and, under stationary
temperature condition, has the form together with the kinematic and isotropic hardening rules:

eR 71"T
Dp!sD!R

K U
n
sgn(p!s) (14a)

sR "HeR 71!DsDeR 71 D (14b)

RQ "h D eR 71 D!dRDeR 71D (14c)

where K, n, H, D, h, d are material parameters and S.T becomes zero if the value inside is negative.
The dynamics of the equations can be uniquely specified by giving the initial conditions of
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Figure 3. Reverse cyclic loading test

the variables:

e71D
t/0

"e71
0

(15a)

sD
t/0

"s
0

(15b)

RD
t/0

"R
0

(15c)

In the case of reverse cyclic loading with constant strain limits and rates as shown in Figure 3(a),
which is of concern in the paper, we know the initial condition of strain

eD
t/0

"e
0

(16)

and the strain rate

eR"G
eR
c

for 2nt
c
)t((2n#1)t

c
!eR

c
for (2n#1)t

c
)t(2(n#1)t

c

, n"0, 1, 2, . . . (17)

These first allow us to know the time history of strain e iteratively

e
k`1

"e
k
#*t ) e

k
(18)
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The initial stress is thus derived from equations (9), (10), (15a) and (16)

pD
t/0

" E(e
0
!e71

0
) (19)

The next states of the viscoplastic strain, back stress and drag stress can be then derived after their
rate of change has been computed by equations (14):

e71
k`1

"e71
k
#*t ) eR 71

k
(20a)

s
k`1

"s
k
#*t ) sR

k
(20b)

R
k`1

"R
k
#*t )RQ

k
(20c)

We can also derive the next state of stress p
k`1

through equations (18) and (19a):

p
k`1

"E(e
k`1

!e71
k`1

) (21)

and the repetition of these operations enables us to carry out the whole computer simulation. The
stress—strain curve, general input—output data used to show the performance of material consti-
tutive models is shown in Figure 3(b).

Chaboche’s model explained here is suited for inelastic material characteristics in a wide range
as one of the best models although is not very appropriate to describe the tensile behaviour.
Needless to say, other conventional models also have advantages and disadvantages, and this is
largely due to the fact that the descriptive capability of models depends on their explicit
mathematical formulation. The next section will present the definition of implicit material models
and a model based on neural networks.

4. NEURAL CONSTITUTIVE MODELLING

4.1. Explicit and implicit constitutive models

Having a look at conventional constitutive models described in the last section, we can define
explicit and implicit constitutive models as follows:

Definition (Explicit constitutive models). Let x and a be a set of variables and material
parameters respectively and / the model equations. Note here that x includes both the input and
output variables. In the case of material models, input variables are viscoplastic strain e71 and
material internal variables n, and the output variable is p. Explicit constitutive models are then
given by

/(x; a)"0 (22)

where / has an explicit expression.

Definition (Implicit constitutive models). In implicit constitutive models, model equations
/ ideally have no explicit expressions:

/(x)"0 (23)

thus containing no material parameters. Implicit constitutive models are henceforth constructed
only from the input—output data without any analytical investigations.
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Conclusively, the advantage of explicit constitutive models is that they can be easily developed
if their mechanics are clear. On the other hand, implicit constitutive models have their potential if
their mechanics are unknown but input—output data are obtainable. The important thing here is
hence the selection of input and output variables. The next section will deal with the selection by
representing viscoplastic constitutive models in a state space form.

4.2. State-space representation of viscoplastic constitutive models

The idea of state space comes from the state-variable method of describing differential
equations. In this method, dynamical systems are described by a set of first-order differential
equations in variables called the state, and the solution may be visualized as a trajectory in space.

Use of the state-space approach has been often referred to as modern control theory,29 whereas
use of transfer-function-based methods such as root locus and frequency response have been
referred to as classical control design. Advantages of state-space design are especially apparent
when engineers design controllers for systems with more than one control input or more than one
sensed output. A further advantage of the state-space design is that the system representation
provides a complete (internal) description of the system, including possible internal oscillations or
instabilities that might be hidden by inappropriate cancellations in the transfer-function (in-
put/output) description.

The motion of any finite dynamical system can be expressed as a set of first-order ordinary
differential equations. This is often referred to as the state-variable representation. In general,
a nonlinear dynamic system is given by

x5 "w(x, u; a) (24a)

with initial conditions:

xD
t/0

"x
0

(24b)

where x3Rn is a set of n variables and u3Rr, known for all t, is a set of r control inputs.
w :Rn]RrPRn is assumed to be continuously differentiable with respect to each of its arguments.

For example, Newton’s law for a single mass M moving in one dimension x under force F is

Mẍ"F (25)

If we define one state variable as the position x
1
"x and the other state variable as the velocity

x
2
"xR , this equation can be written as

xR
1
"x

2
(26a)

xR
2
"

F

M
(26b)

These first-order linear differential equations can be concisely expressed using matrix notation.
If we collect the state into a column vector x, and the coefficients of the state equations into
a square matrix A, and the coefficients of the input into the column matrix B, these equations can
be written in matrix form as

C
xR
1

xR
2
D"C

0 1

0 0DC
x
1

x
2
D#C

0

1/MDF (27a)
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or
x5 "Ax#Bu (27b)

where A is the system matrix and B is the input matrix. More generally the equation is hence
represented by equation (24a). The dynamics of the system is uniquely determined if the initial
state of the state variables is given:

xD
t/0

"x
0

(28)

In sanction with the state-space method, so as to describe dynamics or viscoplasticity in
constitutive models, explicit models are thus defined with the explicit equations w:

x5 "w(x, u; a) (29)

Meanwhile, implicit viscoplastic constitutive models are expressed with implicit mapping w:

x5 "w(x, u) (30)

4.3. Generalization of viscoplastic constitutive models and neural network constitutive models

The state-space representation of viscoplastic models described in the last section renders us
possible to construct the viscoplastic constitutive models in a general fashion. Let the viscoplastic
strain, internal variables, stress and material parameters be e71, n, p and a respectively, the
generalized form of explicit constitutive model may be written as

e5 71"e5ª 71(e71, n, p; a) (31a)

n0 "n0K (e71, n, p; a) (31b)

It can be seen that a number of existing explicit models have similar representations. The
generalized implicit constitutive model can thus have the form

eR 71"e5ª 71(e71, n, p) (32a)

n0 "n0ª (e71, n, p) (32b)

Note here that internal variables can be the back and drag stresses or anything else, depending on
material behaviour to be described.

Considering the state-space method, we can find that the viscoplastic strain and internal
material variables correspond to the state variables whereas the stress acts as a control input. The
dynamics of the models can be hence uniquely specified by giving the initial conditions of the state
variables:

e71D
t/0

"e71
0

(33a)

nD
t/0

"n
0

(33b)

and the control input p for all t. The viscoplastic strain and internal variables can be simulated
through the discretised integration scheme:

e71
k`1

"e71
k
#*t ) e5 71

k
(34a)

n
k`1

"n
k
#*t ) n0

k
(34b)
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Figure 4. Proposed neural network constitutive model

Figure 5. Training of the proposed model

Control inputs of dynamical systems should be known for all t a priori, normally being
independent of the state variables, but the control input of the viscoplastic material is the stress
and is therefore derived from the state variables iteratively, i.e. the next state of stress p

k`1
can be

derived from the current stress p
k
, first computing the initial stress:

pD
t/0

"E(e
0
!e71

0
) (35a)

p
k`1

"u (p
k
) (35b)

The derivation of p
k`1

is explained in Section 3.3.
In accordance to the fact that state space forms in various applications have been successfully

learned by neural networks,30—32 we propose a neural network constitutive model where the
neural network learns the mapping e5ª 71 and n0ª . The architecture of the proposed model is shown in
Figure 4. The model inputs the current viscoplastic strain, internal variables and stress, output-
ting the current rate of change of viscoplastic strain and internal variables. As an example, if two
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Figure 6. Stress—time curve

internal variables of back and drag stresses are chosen as in Chaboche’s model, the proposed
model is composed of four inputs and three outputs. The block diagram for training the model is
illustrated in Figure 5.

The superiority of the proposed model to all the explicit models may be summarised by the
following four facts. First, because of the implicitness, the proposed model can deal with a broad
range of material behaviour. Secondly, one only needs to choose state variables to construct the
proposed model unlike all the explicit models where tedious trial-and-error processes for their
formulation are necessary as the implicit model can be constructed only from input—output data.
Thirdly, the proposed model has the state space representation, thus capable of describing any
dynamical behaviours of materials. Fourthly, since an excellent universal function approximator
of neural network is used, the proposed model can create very accurate material behaviours.

4.4. Derivation of training data

While the experimental data usually describe only stress—strain relationships and their time
histories, training the proposed model requires different information, i.e. the values of inelastic
strain, internal variables and stress at every iterative time step for inputs e71, n, p and the values of
rate of inelastic strain and internal variables at the step for outputs e5 71, n0 . Information sufficient
for training the network becomes henceforth the time histories of the inelastic strain, internal
variables and stress, so that they must be extracted from experimental data.

Difficulty in extracting such training data from experiments stems from non-phenomenological
characteristics of internal variables, i.e. the concept of the variables is simply rooted in the theory
of inelasticity (plasticity), as was described in Section 3, rather than obtainable experimental
information. The difficulty can however be overcome by taking data which well characterises
internal variables. Although various internal variables can be considered depending on which
material phenomena to be achieved, a technique for the decomposition proposed here is in
conjunction with kinematic and isotropic hardening variables as they are of our interest.

Given experimental data a priori in case of the reversed cyclic loading shown in Figure 3, the
training data are obtained in the following order:

(1) draw the stress—time curve shown in Figure 6 from the stress—strain and strain—time curves,
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Figure 7. Stress—inelastic strain curve

(2) estimate the Young’s modulus from the stress—strain curve and eliminate the stress—elastic
strain component from the stress—strain curve to obtain the stress—inelastic strain curve as
shown in Figure 7,

(3) draw the inelastic strain—time curve by combining the stress—time and stress—inelastic strain
curves as illustrated in Figure 8,

(4) plot the absolute values of each yield stress with respect to the absolute value of inelastic
strain from the stress—inelastic strain curve and interpolate linearly between the adjacent
plots as shown in Figure 9,

(5) draw a stress—time curve by incorporating the inelastic strain—time curve to get the time
history of the isotropic hardening stress as can be seen in Figure 10,

(6) subtract the total stress from the isotropic hardening stress with respect to time to obtain
the kinematic hardening stress—time curve depicted in Figure 11,

(7) prescribe a time interval and obtain the states and increments of the inelastic strain,
kinematic and isotropic stresses as well as the total stress from Figures 6, 10, and 11 at every
interval.

5. NUMERICAL EXAMPLES

5.1. Ability to replace explicit constitutive models

In this section, the performance of the proposed model is investigated using pseudo—experi-
mental data created from Chaboche’s model. Shown in Figure 12 are the equations that the
proposed model should learn. Non-linearity of equation (14), including S)T and D ) D, obviously
renders the proposed model difficult to learn the equations.
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Figure 8. Inelastic strain—time curve

Figure 9. Yielding stress with respect to inelastic strain

Figure 10. Isotropic hardening stress—time curve

Material parameters used to create training and validation data are listed in Table I. The
number of training data were 307, and they were regularly taken from the first five cycles of
a reverse cyclic loading test with a constant strain rate, parameters of which are listed in Table II.
Each validation data was plotted in the center of two neighbouring training data. The
stress—strain representation of the training data and validation data is indicated in Figure 13(a),
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Figure 11. Kinematic hardening stress—time curve

Figure 12. Equations to learn for the proposed model

Table I. Material parameters to create training
and validation data

K n H D H R
0

d

50 3 5000 100 300 50 0)6

Table II. Parameters of the reverse cyclic loading test

e
.!9

(per cent)
DeR D

(per cent/s)
No. of

training sets
No. of

validation sets

0)036 8)0]10~3 307 306

whilst Figures 13(b) and 13(c) show the strain and stress training data with respect to time,
respectively. Two hidden layers each with six units were placed between the input and output
layers. All processes necessary for neural networks were conducted using free software Stuttgart
Neural Network Simulator (SNNS), developed by University of Stuttgart.
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Figure 13. Training data created by Chaboche’s model: (a) stress—strain data; (b) strain data; (c) stress data
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Figure 14. Error development during training

The error development of the training and validation sets until 10,000 training iterations is
shown in Figure 14. Clearly, the error is approaching to zero, indicating that the neural network
is learning the material model. Figure 15 shows strain—time, stress—time and stress—strain training
data and the corresponding curves created by the neural network. It is seen that the curves well
correlate with the training data, indicating that the model can mimic Chaboche’s model.

Now that we found that the proposed model could reproduce the training data, we investigated
the ability of the model to produce untrained curves. The performance of the model with cyclic
strain ranges of $0)025, $0)040 and $0)072 per cent were simulated and compared to the
exact curves by Chaboche’s model.

Figure 16 show the strain—time, stress—time and stress-strain curves by the proposed method
with $0)025 per cent strain range. The proposed model has a good agreement with the exact
curve. This is found due to the ability of interpolation of the neural network. For example, at the
maximum strain of the first cycle of the training data, the drag and back stresses are 55)3 and
43)4 MPa, respectively, whereas the corresponding curve by the proposed model has a drag stress
of 51)7 MPa ((55)3 MPa) and a back stress of 26)2 MPa ((43)4 MPa), and the curve by the
proposed model is within the training data all the time.

A similar material behaviour to the exact curve by Chaboche’s model is obtained with $0)040
per cent as shown in Figure 17, though the range exceeds that of the training data. This result
indicates that the proposed model can create a curve similar to the exact curve extrapolatively if
the extrapolation is adjacent. However the peak of the second cycle of back stress shows large
errors, indicating that there is no guarantee in extrapolation.

The curves of the proposed model with $0)072 per cent are far off the exact curves as
illustrated in Figure 18. We can clearly see that the curve by the proposed model in the first cycle
deviated from Chaboche’s curve after a strain of 0)036 per cent, which the proposed model did not
experience for training. There exist considerable errors in stress and strain curves.

5.2. Ability to replace experimental data

The proposed model was applied to the actual experimental data of 2 1/4Cr-1 Mo Steel under
a temperature of 673 K, obtained from a benchmark project by the Society of Material Science,
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Figure 15. Training data and corresponding curve created by the proposed model: (a) strain-time data; (b) stress-time
data; (c) stress—strain data
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Figure 16. Performance of the proposed model with maximum strain range 0)025 per cent: (a) strain-time curve;
(b) stress-time curve; (c) stress—strain curve
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Figure 17. Performance of the proposed model with maximum strain range 0)040 per cent

Figure 18. Performance of the proposed model with maximum strain range 0)072 per cent

Japan.33 Experimental data used included stress—strain data with strain rates of 0)0001, 0)01 and
0)5 per cent/s, and they are shown in Figure 19. For simplicity, the proposed model was used to
learn data with only one strain rate at a time. As an example, Figure 20 depicts the time histories
of first cycles of the inelastic strain, isotropic and kinematic hardening stresses and total stress
with a strain rate of 0)5 per cent/s. Training data with different cycles and strain rates were also
prepared in the same manner. The model used here had the same architecture as the
one described in Section 4.3, and the technique explained in Section 4.4 was used to extract
training data for the proposed model from experimental data. As the explicit constitutive
model for comparison, the performance of Chaboche’s model, parameters of which were
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Figure 19. Experimental data of 2 1/4Cr-1 Mo steel

best fitted by a parameter identification technique34 through all the strain rates, was also
investigated.

Figure 21 shows curves each created by the resultant model, together with the corresponding
training data, after 20,000 training iterations were completed. Although direct comparison cannot
be made due to the fact that neural networks were each used to learn only one curve, it is seen
that, in comparison to the best-fit Chaboche’s curve in Figure 22, the configuration of the
proposed model is significantly similar to the experimental data.

6. CONCLUSIONS

The implicit constitutive model has been defined and an implicit viscoplastic model using neural
networks has been proposed in this paper. The proposed model, based on the state-space method,
has the inputs of the current viscoplastic strain, internal variables and stress and the outputs of
the current rates of change of the viscoplastic strain and material internal variables.

The proposed model was trained using input—output data generated from Chaboche’s model,
and could reproduce the original stress—strain curve. In addition, the model demonstrated the
ability of interpolation by generating untrained curves. It was also found that the model can
extrapolate in close proximity to the training data although it is not extrapolatively precise to
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Figure 20. Training data of the first cycle with 0)5 per cent/s: (a) stress-time curve; (b) inelastic strain-time curve;
(c) isotropic hardening stress—time curve; (d) kinematic hardening stress-time curve
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Figure 20. (Continued)

Figure 21. Performance of the proposed model and experimental data
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Figure 22. Performance of the best fit Chaboche’s model and experimental data

a large extent. Therefore, the proposed model can replace Chaboche’s model completely by its
interpolative capability if a variety of training data with different conditions are used. A simple
technique to derive training data for the proposed model from experimental data was also
described. Having been tested with the actual experimental data, the proposed model could
correlate well with material behaviours in comparison to the best fit Chaboche’s model. In
conclusion, the results of the numerical examples obviously indicates the superiority of the
proposed model to all the existing explicit constitutive models, at least in an interpolative fashion.

The paper was mainly aimed at describing the concept of the proposed model as the first step,
thereby indicating its applicability only from simple experimental data, so various further studies
are still left open. Depending on the type of experiment, one may try to describe material
behaviours using various characteristic points in the experiment for the representation of internal
variables. Strategies for selecting proper internal variables are thus important issues. An adequate
technique for extracting training data from experimental data has to be proposed for each
internal variable accordingly.

Finally, the conclusive suggestion of the authors is that more researchers should be involved
with implicit constitutive models as long as they have advantages over explicit models as
described in the paper. At this moment, there is a big gap between implicit and explicit
constitutive modelling in terms of research being carried out, i.e. only a few research projects are
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ongoing with the implicit constitutive modelling in the world, while numerous researchers have
been working on explicit constitutive models over decades.
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